Ultraflexible two-dimensional Janus heterostructure superlattice: a novel intrinsic wrinkled structure

K Ren and GQ Zhang and LF Zhang and HS Qin and G Zhang, NANOSCALE, 15, 8654-8661 (2023).

DOI: 10.1039/d3nr00429e

The recently reported two-dimensional Janus transition metal dichalcogenide materials present promising applications such as in transistors, photocatalysts, and thermoelectric nanodevices. In this work, using molecular dynamics simulations, the self-assembled in-plane MoSSe/WSSe heterostructure superlattice is predicted with a natural sinusoidal structure constructed by an asymmetric interface. Such a sinusoidal structure shows extraordinary mechanical behavior where the fracture strain can be enhanced up to 4.7 times than that of the symmetrical interface. Besides, the deformational structure of all these MoSSe/WSSe heterostructure superlattice are in accordance with the Fourier function curve; the fracture strength and fracture strain also demonstrate pronounced size dependence. Our investigations proposed an ultrastretchable assembled heterostructure superlattice and provided a desirable strategy to tune the mechanical properties of such an in-plane two-dimensional heterostructure.

Return to Publications page