Atomistic model of the anisotropic response of ortho-Mo2C to indentation
IMP Espinosa and Y Karaaslan and C Sevik and A Martini, AIP ADVANCES, 13, 065125 (2023).
DOI: 10.1063/5.0150030
Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
Return to Publications page