Microstructural evolution of periclase under irradiation by molecular dynamics simulations
A Chartier and P Fossati and L Van Brutzel and O Dorosh and J Jagielski, JOURNAL OF APPLIED PHYSICS, 133, 215902 (2023).
DOI: 10.1063/5.0144673
The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small 1/2?110? loops lying in 001 planes and made of (MgO)(6) interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three 110, 001, and 111 planes, which then follows a sublinear law. The 1 2?110? loops lying in the 011 planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.
Return to Publications page