Deep-learning-assisted theoretical insights into the compatibility of environment friendly insulation medium with metal surface of power equipment

XH Wan and ZF Zhang and AY Wang and JH Su and WJ Zhou and J Robertson and Y Peng and Y Zheng and YZ Guo, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 648, 317-326 (2023).

DOI: 10.1016/j.jcis.2023.05.188

Exploring a new generation of eco-friendly gas insulation medium to replace greenhouse gas sulphur hexafluoride (SF6) in power industry is significant for reducing the greenhouse effect and building a low-carbon environment. The gas-solid compatibility of insulation gas with various electrical equipment is also of significance before practical applications. Herein, take a promising SF6 replacing gas trifluoromethyl sulfonyl fluoride (CF3SO2F) for example, one strategy to theoretically evaluate the gas-solid compatibility between insulation gas and the typical solid surfaces of common equipment was raised. Firstly, the active site where the CF3SO2F molecule is prone to interact with other compounds was identified. Secondly, the interaction strength and charge transfer between CF3SO2F and four typical solid surfaces of equipment were studied by first-principles calculations and further analysis was conducted, with SF6 as the control group. Then, the dynamic compatibility of CF3SO2F with solid surfaces was investigated by large- scale molecular dynamics simulations with the aid of deep learning. The results indicate that CF3SO2F has excellent compatibility similar to SF6, especially in the equipment whose contact surface is Cu, CuO, and Al2O3 due to their similar outermost orbital electronic structures. Besides, the dynamic compatibility with pure Al surfaces is poor. Finally, preliminary experimental verifications indicate the validity of the strategy.

Return to Publications page