Unveiling the effect of interface on torsional behavior of crystalline Al-Al90Sm10 metallic glass nanolaminates
S Mishra and S Pal, PHILOSOPHICAL MAGAZINE, 103, 1507-1530 (2023).
DOI: 10.1080/14786435.2023.2219463
Influence of configurational design of single crystal Al-Al90Sm10 metallic glass nanolaminates on torsion deformation behaviour of Al/Al90Sm10 nanolaminate (Configuration 1) and Al90Sm10/Al nanolaminate (Configuration 2) from a structural evolution aspect have been analysed by employing Molecular Dynamics for a torsion speed of 1/600 revolution/ps. Adaptive common neighbour (a-CNA) analysis, Dislocation extraction algorithm (DXA), atomic shear strain analysis, and Voronoi Polyhedral (VP) analysis have been carried out to reveal the structural evolution in the nanolaminates specimen subjected to torque. As a consequence of dislocation density localisation under torsional loading in Al/Al90Sm10 nanolaminate high atomic strain gradient is developed in the nanolaminate specimen causing torsional buckling of the Al/Al90Sm10 nanolaminate. The localisation of dislocation density rings induces the formation of dislocation substructure in Al/Al90Sm10 nanolaminate. The crystalline/amorphous interface serves as a free surface and encourages the formation of such dislocation substructure. The collective nucleation, coalescence, and growth of shear transformation zones (STZs) leading to the formation of thick shear bands on either end of Al90Sm10/Al nanolaminate inducing an almost homogenous atomic strain gradient across the surface of the nanolaminate specimen thereby averting torsional buckling. The C/A interface serves as a nucleation site for the generation STZs in Al90Sm10/Al nanolaminate. VPs such as <0, 0, 4, 6>, <0, 3, 6, 4>, <0, 3, 6, 5> <0, 2, 8, 2> have the load bearing capacity and are resistant to fragmentation under the subjugation of torsion loading.
Return to Publications page