Puzzles of Surface Segregation in Binary Pt-Pd Nanoparticles: Molecular Dynamics and Thermodynamic Simulations
V Samsonov and A Romanov and I Talyzin and A Lutsay and D Zhigunov and V Puytov, METALS, 13, 1269 (2023).
DOI: 10.3390/met13071269
Up till now, there have been extremely contradictory opinions and inadequate results concerning surface segregation in binary platinum- palladium (Pt-Pd) nanoparticles, including the problems regarding segregating components, as well as the size and temperature dependences of segregation. Taking into account such a situation, we investigated the surface segregation in Pt-Pd nanoparticles by combining atomistic (molecular dynamics) and thermodynamic simulations. For molecular dynamics experiments, the well-known program LAMMPS and the embedded atom method were employed. In the course of the atomistic simulations, two different sets of parameterizations for the Pt-Pt, Pd-Pd, and Pt-Pd interatomic interaction potentials were used. The thermodynamic simulation was based on solving the Butler equation by employing several successive approximations. The results obtained via atomistic simulation and thermodynamic simulation on the basis of the Butler equation were compared with each other, as well as with predictions that were based on the Langmuir-McLean equation and some experimental data. Both simulation methods (atomistic and thermodynamic) predicted the surface segregation of Pd, which diminishes with the nanoparticle size and with increasing temperature. Our simulation results do not confirm the predictions of some authors on surface segregation inversion, i.e., the reversal from the surface segregation of Pd to the surface segregation of Pt when diminishing the nanoparticle size.
Return to Publications page