Structure and dynamics of an active polymer chain inside a nanochannel grafted with polymers

R Sahoo and R Chakrabarti, SOFT MATTER, 19, 5978-5988 (2023).

DOI: 10.1039/d3sm00618b

We use computer simulations to investigate the complex dynamics of a polymer, made of active Brownian particles, inside a channel grafted internally with passive polymer chains. Our simulations reveal that this probe-polymer, if passive, exhibits a compact structure when its interaction is repulsive with the grafted chains as it tends to stay within the hollow space created along the axis of the channel. On increasing the attractive interaction, the passive probe-polymer is pulled towards the grafted polymeric region and adopts an extended structure. By contrast, switching on the activity helps the probe- polymer to escape from the local traps caused by the sticky grafted chains. The interplay between the activity of the probe-polymer and its sticky interaction with the grafted chains results in shrinking, followed by swelling as the activity is increased. To elucidate the dynamics we compute the mean square displacement (MSD) of the center of mass of the probe-polymer, which increases monotonically with activity and displays superdiffusive behavior at an intermediate time and enhanced diffusion at a long time period. In addition, compared with the attractive interaction, the active probe-polymer shows faster dynamics when the interaction is repulsive to the grafted polymers. We believe that our current study will provide insights into the structural changes and dynamics of active polymers in heterogeneous media and will be useful in designing polymer-based drug delivery vehicles.

Return to Publications page