The influence of force fields on the structure and dynamics of water confined in ZIF-8 from atomistic simulations
J Wang and SJ Xie, PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023).
DOI: 10.1039/d3cp02075d
The complexity of modeling flexible crystals, such as ZIF-8, mainly stems from the handling of intramolecular interactions. Numerous force fields have been proposed in the literature to describe the interactions between atoms in ZIF-8. We employ seven force fields to examine the structure and dynamic behavior of water molecules confined in ZIF-8, with the aim of investigating the impact of force fields on simulation results. Various structural characterization methods consistently indicate that the choice of different force fields has quantitative effects but no qualitative effects on the structural characteristics of confined water. Additionally, the force fields do not impact the qualitative description of the diffusion mechanism. Both mean-square displacement and van Hove autocorrelation function reveal two characteristic movements of water molecules diffusing in ZIF-8: a short- time intra-cavity hopping process and a long-time inter-cavity hopping process. However, the framework flexibility is found to play a crucial role in determining the order of spatial arrangement and local structure, self-diffusion coefficient and reorientational dynamics of confined water. Specifically, the DREIDING force field gives rise to an unrealistic stiff framework, enhancing the order of spatial arrangement and diminishing the local ordered structure of confined water. Meanwhile, it results in much slower translational and reorientational dynamics. Hence, the general DREIDING force field cannot be considered for providing a quantitative description of the water structure and dynamics.
Return to Publications page