Interfacial engineering for enhanced mechanical performance: High- entropy alloy/graphene nanocomposites
YR Shi and WT Ye and DP Hua and Q Zhou and ZB Huang and YX Liu and S Li and T Guo and YN Chen and SJ Eder and HF Wang, MATERIALS TODAY PHYSICS, 38, 101220 (2023).
DOI: 10.1016/j.mtphys.2023.101220
In pursuit of high-performance materials, the synergistic combination of high-entropy alloys (HEAs) and graphene (Gr) has emerged as a promising approach. Here, we report a groundbreaking study on CoCrFeMnNi/Gr nanocomposites that highlights their exceptional mechanical properties. Leveraging on molecular dynamics simulations, we reveal the underlying mechanisms that govern the tensile behavior of these nanocomposites. Notably, we demonstrate that the introduction of graphene has a profound impact on the nucleation and propagation of dislocations in HEA. The interface between the HEA and graphene serves as a remarkable source for dislocations, leading to a transformative alteration of the dislocation behavior. Moreover, the high stresses accumulated at the interface drive graphene to undergo out-of-plane deformation, accommodating the plasticity of the HEA. We establish that the mechanical properties of these nanocomposites exhibit an intriguing dependence on the tensile direction and the thickness of HEA, which can be accurately described by a modified HallPetch relationship. Our findings provide crucial insights into the role of graphene in strengthening CoCrFeMnNi HEA/Gr composites, paving the way for the design of advanced materials with unprecedented strength and ductility. The extraordinary mechanical performance of HEA/Gr nanocomposites unravels a new frontier in materials science, with wide-ranging implications for a broad spectrum of applications, from aerospace to automotive and beyond.
Return to Publications page