Multiscale model for failure prediction of carbon-fiber-reinforced composites under off-axis load

T Watanabe and Y Kawagoe and K Shirasu and T Okabe, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 283, 112489 (2023).

DOI: 10.1016/j.ijsolstr.2023.112489

Herein, a multiscale model comprising a quantum-chemical reaction path calculations, molecular dynamics (MD) simulations, and filament and laminate scale finite-element analyses (FEA) is proposed for predicting the failure of carbon-fiber-reinforced composites. In this study, the correlation between MD simulations and filament scale FEA was investigated and complemented. By this complementation, mechanical properties of a resin matrix used in FEA are evaluated by experiment- free MD simulations. The evaluated material properties, namely, failure properties and elasto-plastic properties of the resin matrix were validated using the results of compressive tests for neat resins DGEBA/4,4'-DDS, DGEBA/DETA, and TGDDM/4,4'-DDS. The predicted failure strain of the composites, under off-axis loads, were found to be in good agreement with previously reported experimental results. The FEA results revealed that both the failure and elasto-plastic properties of the resin matrix contribute to the failure of the composites, and the dominant properties vary for the laminate and load configuration.

Return to Publications page