Investigation of ripple-limited low-field mobility in large-scale graphene nanoribbons
M Luisier and TB Boykin and Z Ye and A Martini and G Klimeck and N Kharche and X Jiang and S Nayak, APPLIED PHYSICS LETTERS, 102, 253506 (2013).
DOI: 10.1063/1.4811761
Combining molecular dynamics and quantum transport simulations, we study the degradation of mobility in graphene nanoribbons caused by substrate- induced ripples. First, the atom coordinates of large-scale structures are relaxed such that surface properties are consistent with those of graphene on a substrate. Then, the electron current and low-field mobility of the resulting non-flat nanoribbons are calculated within the Non-equilibrium Green's Function formalism in the coherent transport limit. An accurate tight-binding basis coupling the sigma- and pi-bands of graphene is used for this purpose. It is found that the presence of ripples decreases the mobility of graphene nanoribbons on SiO2 below 3000 cm(2)/Vs, which is comparable to experimentally reported values. (C) 2013 AIP Publishing LLC.
Return to Publications page