Kinetic Mechanism of Surfactant-Based Molecular Recognition: Selective Permeability across an Oil-Water Interface Regulated by Supramolecular Aggregates
HH Zhou and E Shiel and T Bell and SC Lin and S Lenhert, JOURNAL OF PHYSICAL CHEMISTRY B, 127, 10201-10214 (2023).
DOI: 10.1021/acs.jpcb.3c05017
Lipids are known to play a vital role in the molecular organization of all cellular life. Molecular recognition is another fundamental biological process that is generally attributed to biological polymers, such as proteins and nucleic acids. However, there is evidence that aggregates of lipids and lipid-like molecules are also capable of selectively binding to or regulating the partitioning of other molecules. We previously demonstrated that a model two-phase octanol/water system can selectively partition Red 40 and Blue 1 dyes added to an aqueous phase, with the selectivity depending on the surfactant (e.g., cetyltrimethylammonium bromide) dissolved in the organic phase. Here, we elucidate the mechanism of molecular recognition in this system by using quantitative partitioning experiments and molecular dynamics (MD) simulations. Our results indicate that the selectivity for the red dye is thermodynamically favored at all surfactant concentrations, while selectivity for the blue dye is kinetically favored at high surfactant concentrations. The kinetic selectivity for the blue dye correlates with the presence of molecular aggregation at the oil-water interface. Coarse-grained MD simulations elucidate nanoscale supramolecular structures that can preferentially bind one small molecule rather than another at an interface, providing a selectively permeable barrier in the absence of proteins. The results suggest a new supramolecular mechanism for molecular recognition with potential applications in drug delivery, drug discovery, and biosensing.
Return to Publications page