Multi-step nucleation pathway of C-S-H during cement hydration from atomistic simulations
XM Aretxabaleta and J López-Zorrilla and I Etxebarria and H Manzano, NATURE COMMUNICATIONS, 14, 7979 (2023).
DOI: 10.1038/s41467-023-43500-y
The Calcium Silicate Hydrate (C-S-H) nucleation is a crucial step during cement hydration and determines to a great extent the rheology, microstructure, and properties of the cement paste. Recent evidence indicates that the C-S-H nucleation involves at least two steps, yet the underlying atomic scale mechanism, the nature of the primary particles and their stability, or how they merge/aggregate to form larger structures is unknown. In this work, we use atomistic simulation methods, specifically DFT, evolutionary algorithms (EA), and Molecular Dynamics (MD), to investigate the structure and formation of C-S-H primary particles (PPs) from the ions in solution, and then discuss a possible formation pathway for the C-S-H nucleation. Our simulations indicate that even for small sizes the most stable clusters encode C-S-H structural motifs, and we identified a C4S4H2 cluster candidate to be the C-S-H basic building block. We suggest a formation path in which small clusters formed by silicate dimers merge into large elongated aggregates. Upon dehydration, the C-S-H basic building blocks can be formed within the aggregates, and eventually crystallize. The nucleation of calcium silicate hydrate is a crucial step in cement hydration, but is still a poorly understood process. Here the authors use atomistic simulations to study primary particles and their aggregation, revealing a potential C-S-H "basic building block".
Return to Publications page