Automatic Potential Energy Surface Exploration by Accelerated Reactive Molecular Dynamics Simulations: From Pyrolysis to Oxidation Chemistry

WA Kopp and C Huang and YQ Zhao and PY Yu and F Schmalz and L Krep and K Leonhard, JOURNAL OF PHYSICAL CHEMISTRY A, 127, 10681-10692 (2023).

DOI: 10.1021/acs.jpca.3c05253

Automatic potential energy surface (PES) exploration is important to a better understanding of reaction mechanisms. Existing automatic PES mapping tools usually rely on predefined knowledge or computationally expensive on-the-fly quantum-chemical calculations. In this work, we have developed the PESmapping algorithm for discovering novel reaction pathways and automatically mapping out the PES using merely one starting species is present. The algorithm explores the unknown PES by iteratively spawning new reactive molecular dynamics (RMD) simulations for species that it has detected within previous RMD simulations. We have therefore extended the RMD simulation tool ChemTraYzer2.1 (Chemical Trajectory Analyzer, CTY) for this PESmapping algorithm. It can generate new seed species, automatically start replica simulations for new pathways, and stop the simulation when a reaction is found, reducing the computational cost of the algorithm. To explore PESs with low- temperature reactions, we applied the acceleration method collective variable (CV)-driven hyperdynamics. This involved the development of tailored CV templates, which are discussed in this study. We validate our approach for known pathways in various pyrolysis and oxidation systems: hydrocarbon isomerization and dissociation (C4H7 and C8H7 PES), mostly dominant at high temperatures and low-temperature oxidation of n-butane (C4H9O2 PES) and cyclohexane (C6H11O2 PES). As a result, in addition to new pathways showing up in the simulations, common isomerization and dissociation pathways were found very fast: for example, 44 reactions of butenyl radicals including major isomerizations and decompositions within about 30 min wall time and low-temperature chemistry such as the internal H-shift of RO2 -> QO(2)H within 1 day wall time. Last, we applied PESmapping to the oxidation of the recently proposed biohybrid fuel 1,3-dioxane and validated that the tool could be used to discover new reaction pathways of larger molecules that are of practical use.

Return to Publications page