Anomalous Water Wetting on a Hydrophilic Substrate under a High Electric Field
QH Xu and YT Shen and C Zhang and RL Xu and QF Gu and HZ Guo and S Meng, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 14, 11735-11741 (2023).
DOI: 10.1021/acs.jpclett.3c03104
Macroscopically, the traditional Young-Lippmann equation is used to describe the water contact angle under a weak electric field. Here we report a new wetting mechanism of deionized water under a strong electric field that defies the conventional Young-Lippmann equation. The contact angle of the deionized water droplet on a model hexagonal lattice with a different initial wettability is extensively modulated by the vertical electric field. The cosine of water contact angle on a hydrophilic substrate displays an anomalous linear relationship with the field, in contrast to the hydrophobic case, which shows an inverse parabolic relationship. Such anomalous wetting is verified by experimental measurements of water droplets on a pyroelectric substrate. Moreover, we identify that this anomaly arises from the linear modulation of the solid-liquid interfacial tension of hydrophilic substrates by the electric field. Our findings provide atomistic insight into the fundamental laws and new phenomena of water-surface interactions under extreme electric fields.
Return to Publications page