pSPICA Force Field Extended for Proteins and Peptides

Y Miyazaki and W Shinoda, JOURNAL OF CHEMICAL INFORMATION AND MODELING, 64, 532-542 (2023).

DOI: 10.1021/acs.jcim.3c01611

Many coarse-grained (CG) molecular dynamics (MD) studies have been performed to investigate biological processes involving proteins and lipids. CG force fields (FFs) in these MD studies often use implicit or nonpolar water models to reduce computational costs. CG-MD using water models cannot properly describe electrostatic screening effects owing to the hydration of ionic segments and thus cannot appropriately describe molecular events involving water channels and pores through lipid membranes. To overcome this issue, we developed a protein model in the pSPICA FF, in which a polar CG water model showing the proper dielectric response was adopted. The developed CG model greatly improved the transfer free energy profiles of charged side chain analogues across the lipid membrane. Application studies on melittin-induced membrane pores and mechanosensitive channels in lipid membranes demonstrated that CG- MDs using the pSPICA FF correctly reproduced the structure and stability of the pores and channels. Furthermore, the adsorption behavior of the highly charged nona-arginine peptides on lipid membranes changed with salt concentration, indicating the pSPICA FF is also useful for simulating protein adsorption on membrane surfaces.

Return to Publications page