Strain localization in a nanocrystalline metal: Atomic mechanisms and the effect of testing conditions
TJ Rupert, JOURNAL OF APPLIED PHYSICS, 114, 033527 (2013).
DOI: 10.1063/1.4815965
Molecular dynamics simulations are used to investigate strain localization in a model nanocrystalline metal. The atomic mechanisms of such catastrophic failure are first studied for two grain sizes of interest. Detailed analysis shows that the formation of a strain path across the sample width is crucial and can be achieved entirely through grain boundary deformation or through a combination of grain boundary sliding and grain boundary dislocation emission. Pronounced mechanically induced grain growth is also found within the strain localization region. The effects of testing conditions on strain localization are also highlighted, to understand the conditions that promote shear banding and compare these observations to metallic glass behavior. We observed that, while strain localization occurs at low temperatures and slow strain rates, a shift to more uniform plastic flow is observed when either strain rate or temperature is increased. We also explore how external sample dimensions influence strain localization, but find no size effect for the grain sizes and samples sizes studied here. (C) 2013 AIP Publishing LLC.
Return to Publications page