Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats
A Aitkaliyeva and D Chen and L Shao, SCIENTIFIC REPORTS, 3, 2774 (2013).
DOI: 10.1038/srep02774
Thermal transport in carbon nanotube (CNT) mats, consisting of randomly networked multi-walled carbon nanotubes (MWNTs), is not as efficient as in an individual CNT because of the constrained tube-to-tube phonon transport. Through experiments and modeling, we discover that phonon transport in CNT mats is significantly improved by ion irradiation, which introduces inter-tube displacements, acting as stable point contacts between neighboring tubes. Inter-tube displacement-mediated phonon transport enhances conductivity, while inter-tube phonon-defect scattering reduces conductivity. At low ion irradiation fluence, inter- tube thermal transport enhancement leads to thermal conductivity increase by factor > 5, while at high ion irradiation fluence point defects within tubes cause a decrease in thermal conductivity. Molecular dynamics simulations support the experimentally obtained results and the proposed mechanisms. Further conductivity enhancement in irradiated mats was obtained by post-irradiation heat treatment that removes majority of the defects within the tubes without affecting thermally stable inter- tube displacements.
Return to Publications page