Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains

GJJ Gao and YJ Wang and S Ogata, COMPUTATIONAL MATERIALS SCIENCE, 79, 56-62 (2013).

DOI: 10.1016/j.commatsci.2013.05.053

We develop a new Voronoi protocol, which is a space tessellation method, to generate a fully dense (containing no voids) model of nanocrystalline copper with precise grain size control; we also perform uniaxial tensile tests using molecular dynamical (MD) simulations to measure the elastic moduli of the grain boundary and the grain interior components at 300 K. We find that the grain boundary deforms more locally compared with the grain core region under thermal vibrations and is elastically less stiff than the core component at finite temperature. The elastic modulus of the grain boundary is lower than 30% of that of the grain interior. Our results will aid in the development of more accurate continuum models of nanocrystalline metals. (C) 2013 Elsevier B. V. All rights reserved.

Return to Publications page