Blister formation in graphene coating on the nanoparticle decorated copper surface
XY Sun and RN Wu and R Xia and YJ Xu, RSC ADVANCES, 4, 46646-46652 (2014).
DOI: 10.1039/c4ra08050e
Embedded nanoparticles between a graphene coating and substrate often precipitate blisters generated in graphene, which may impede the application of graphene as a surface coating. Molecular dynamics (MD) simulations are performed to analyze the evolution of nanocoating morphology during the process of adhering the graphene onto a nanoparticle decorated metal surface. The simulation reveals that for a deformable nanoparticle, a blister rudiment with a tail formed and then changes into an irregular blister, but a rigid nanoparticle will be ejected from the surface of the substrate without any blistering. Substrate damage caused by the nanoparticles during coating is also analyzed. It is found that hexagonal close-packed atoms emerge from the contact point between the rigid particle and substrate. Understanding how blisters form in graphene coatings by an atomic-scale approach will help this promising material function more effectively and widely.
Return to Publications page