Effect of alloying elements on the properties of Zr and the Zr-H system
M Christensen and W Wolf and CM Freeman and E Wimmer and RB Adamson and L Hallstadius and PE Cantonwine and EV Mader, JOURNAL OF NUCLEAR MATERIALS, 445, 241-250 (2014).
DOI: 10.1016/j.jnucmat.2013.10.040
The effect of the alloying elements Sn, Fe, Cr, Ni, Nb, and O on hydrogen-containing alpha-zirconium and zirconium hydrides is investigated using ab initio quantum mechanical calculations and classical simulations. Cr, Fe, and Ni atoms attract interstitially dissolved H atoms whereas interstitial oxygen atoms show no pronounced interaction with H atoms. The alloying elements destabilize the hydride phases in the order Sn > Fe > Cr > Ni > Nb. Hence, substitutional Sn (if atomically dispersed), Cr and Fe atoms are likely to delay hydride precipitation, effectively increasing the hydrogen solubility. Nb and Sn influence the mobility of Zr self-interstitial atoms (SIA's), which diffuse rapidly and preferentially parallel to the basal planes forming interstitial dislocations loops perpendicular to the basal planes (a-loops). Nb suppresses this diffusion of SIA's, thereby reducing the rate of formation of interstitial a-loops. Sn atoms, if present on substitutional sites, have a similar, but smaller effect. If SIA's approach substitutional Fe, Cr, and Ni atoms, the simulations indicate a spontaneous swap promoting the smaller transition metal atoms into interstitial atoms, which diffuse very rapidly with a preference in the c-direction, thereby facilitating their segregation to energetically more favorable sites such as vacancies, vacancy c-loops, grain boundaries, surfaces, and intermetallic precipitates. (C) 2013 Elsevier B.V. All rights reserved.
Return to Publications page