Computational study on bonding of carbon nanotubes onto metallic substrates

XH Song and HD Zhao, MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS- INFORMATION STORAGE AND PROCESSING SYSTEMS, 20, 397-402 (2014).

DOI: 10.1007/s00542-013-1917-6

Mechanism of carbon nanotube bonding onto the metal substrate is investigated using molecular dynamics in this study. Different temperatures and types of the metal atoms to the carbon nanotube surface are considered. It is shown that there is close relationship between surface melting and contact length of the bonding. The melting firstly occurs on the surface of the metal and the contact length increases with the melting propagating from the open surface to the interior of the metal as the temperature rising. In addition, the wetting property of the metal atoms plays an important role during the bonding of the carbon nanotube onto the metal. The carbon nanotube will be easily welded onto the metal with excellent wetting property. The results indicate that the bonding process of the carbon nanotube onto the metal can be controlled by two ways. First, concentrating energy on the metal surface to enhance the surface melting. Second, selecting the metal with excellent wetting property or effective method is utilized to enhance the wetting property of the metal atoms to the carbon nanotube surface.

Return to Publications page