Ti and N adatom descent pathways to the terrace from atop two- dimensional TiN/TiN(001) islands
D Edstrom and DG Sangiovanni and L Hultman and V Chirita and I Petrov and JE Greene, THIN SOLID FILMS, 558, 37-46 (2014).
DOI: 10.1016/j.tsf.2014.02.053
We use classical molecular dynamics and the modified embedded atom method to determine residence times and descent pathways of Ti and N adatoms on square, single-atom-high, TiN islands on TiN(001). Simulations are carried out at 1000 K, which is within the optimal range for TiN(001) epitaxial growth. Results show that the frequency of descent events, and overall adatom residence times, depend strongly on both the TiN(001) diffusion barrier for each species as well as the adatom island-edge location immediately prior to descent. Ti adatoms, with a low diffusion barrier, rapidly move toward the island periphery, via funneling, where they diffuse along upper island edges. The primary descent mechanism for Ti adatoms is via push-out/exchange with Ti island-edge atoms, a process in which the adatom replaces an island edge atom by moving down while pushing the edge atom out onto the terrace to occupy an epitaxial position along the island edge. Double push-out events are also observed for Ti adatoms descending at N corner positions. N adatoms, with a considerably higher diffusion barrier on TiN(001), require much longer times to reach island edges and, consequently, have significantly longer residence times. N adatoms are found to descend onto the terrace by direct hopping over island edges and corner atoms, as well as by concerted push-out/exchange with N atoms adjacent to Ti corners. For both adspecies, we also observe several complex adatom/island interactions, before and after descent onto the terrace, including two instances of Ti island-atom ascent onto the island surface. (C) 2014 Elsevier B.V. All rights reserved.
Return to Publications page