Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite

XD Liu and XC Lu and RC Wang and HQ Zhou, GEOCHIMICA ET COSMOCHIMICA ACTA, 72, 1837-1847 (2008).

DOI: 10.1016/j.gca.2008.01.028

To explore the effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectites, classical molecular dynamic simulations are performed to derive the swelling curves, distributions and mobility of interlayer species, and Cs binding structures. Three representative smectites with distinct layer-charge distributions are used as model clay frameworks and interlayer water content is set within a wide range from 0 to 380 mg(water)/g(clay). All the three smectites swell in a similar way, presenting the characteristic swelling plateaus and similar trends of swelling energetic profiles. The full-monolayer hydrate, corresponding to the global minima of the immersion energy, is the most stable hydrated state of Cs-smectites. The calculated diffusion coefficients of interlayer species disclose the confining effects in all smectites: both water molecules and ions diffuse slower than corresponding bulk cases and they are Much more mobile in the direction parallel to the clay surfaces than perpendicular to them. The formed inner-sphere complex structures are very similar in different smectites: ions bind on the H-sites or T-sites and water molecules form cage-like caps covering the ions. Layer-charge distribution is found to have significant influences on the mobility of interlayer species and preference of ion binding sites. A general sequence is proposed to elucidate the preferences of various hexagonal sites (H-sites) and triangular sites (T-sites), that is, tetrahedrally substituted H-sites > nonsubstituted H-sites > tetrahedrally Substituted T-sites > nonsubstituted T-sites, but the influence of octahedral substitutions on the preference of the neighboring sites is not obvious. Analysis of mobility indicates that H-sites are more stable Cs-fixation positions than T-sites and smectite with higher fraction of octahedral charges seems to be the most effective barrier material no matter how water content varies although all smectites can immobilize Cs ions in relatively dry conditions. These findings will not only facilitate basic research in geochemistry and material sciences, but also promote the barrier material designing. (C) 2008 Elsevier Ltd. All rights reserved.

Return to Publications page