Supramolecular Assembly of Asymmetric Self-Neutralizing Amphiphilic Peptide Wedges
D Van Gough and JS Wheeler and SF Cheng and MJ Stevens and ED Spoerke, LANGMUIR, 30, 9201-9209 (2014).
DOI: 10.1021/la501620g
Mimicking the remarkable dynamic and multifunctional utility of biological nanofibers, such as microtubules, is a challenging and technologically attractive objective in synthetic supramolecular chemistry. Understanding the complex molecular interactions that govern the assembly of synthetic materials, such as peptides, is key to meeting this challenge. Using molecular dynamics simulations to guide molecular design, we explore here the self-assembly of structurally and functionally asymmetric wedge-shaped peptides. Supramolecular assembly into nanofiber gels or multilayered lamellar structures was determined by cooperative influences of hydrogen bonding, amphiphilicity (hydrophilic asymmetry), and the distribution of electrostatic charges on the aqueous self-assembly of asymmetric peptides. Molecular amphiphilicity and beta-sheet forming capacity were both identified as necessary, but not independently sufficient, to form supramolecular nanofibers. Imbalances in positive and negative charges prevented nanofiber assembly, while the asymmetric distribution of balanced charges within a peptide is believed to affect peptide conformation and subsequent self-assembly into either nanofibers or lamellar structures. Insights into cooperative molecular interactions and the effects of molecular asymmetry on assembly may aid the development of next- generation supramolecular nanomaterial assemblies.
Return to Publications page