Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination
D Cohen-Tanugi and JC Grossman, JOURNAL OF CHEMICAL PHYSICS, 141, 074704 (2014).
DOI: 10.1063/1.4892638
Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000-2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 +/- 20 l/m(2)-h-bar assuming a nanopore density of 1.7 x 10(13) cm(-2). (C) 2014 AIP Publishing LLC.
Return to Publications page