Evolution of Carbon Nanofiber-Supported Pt Nanoparticles of Different Particle Sizes: A Molecular Dynamics Study

HY Cheng and YA Zhu and D Chen and PO Astrand and P Li and ZW Qi and XG Zhou, JOURNAL OF PHYSICAL CHEMISTRY C, 118, 23711-23722 (2014).

DOI: 10.1021/jp505554w

Molecular dynamics simulations employing the ReaxFF reactive force field have been carried out to analyze the structural evolution of fishbone- type carbon nanofiber-supported Pt nanoparticles, with particle size ranging from 5.6 to 30.7 angstrom. Simulated results indicate that upon adsorption the distribution of first-shell PtPt coordination number and radial distribution function change significantly in Pt nanoparticles up to 2 nm in size and that the restructuring degree of the Pt nanoparticles decreases with particle size, which is attributed both to the reduced binding energy per Pt atom bonded to support and to the increased cohesive energy of the Pt nanoparticles. In the Pt-10 particle, the majority of the Pt atoms are detached from the metal particle, leading to atomic adsorption of single Pt atoms on the support. As the Pt particle size is increased to similar to 3 nm, however, the crystalline degree of Pt nanoparticles is even higher than that of the corresponding isolated nanoparticles because the strong metalsupport interaction has a positive effect on the crystalline degree of the upper part of Pt nanoparticles. Two surface properties of the Pt nanoparticles, namely, Pt dispersion and coordination number of surface Pt atoms, are then computed and found to decrease and increase, respectively, with particle size. Thus, on-purpose control of particle size (and hence the metalmetal and metalsupport interactions) is of crucial importance for tuning the superficial structures of supported active metal particles, which eventually determine the adsorption and catalytic properties of catalysts.

Return to Publications page