Free-standing silicene obtained by cooling from 2D liquid Si: structure and thermodynamic properties
VV Hoang and HTC Mi, JOURNAL OF PHYSICS D-APPLIED PHYSICS, 47, 495303 (2014).
DOI: 10.1088/0022-3727/47/49/495303
The structure and various thermodynamic properties of free-standing silicene have been studied by computer simulation. Models are obtained by cooling from buckling two-dimensional (2D) liquid Si via molecular dynamics (MD) simulation with Stillinger-Weber interatomic potential. The temperature dependence of total energy, heat capacity, mean ring size and mean coordination number shows that silicenization of 2D liquid Si exhibits a first-order-like behavior. The evolution of radial distribution function upon cooling from the melt also shows that solidification occurs in the system. The final configuration of silicene is analyzed via coordination, bond-angle, interatomic distance and ring distributions or distribution of buckling in the system. 2D visualization of atomic configurations clearly demonstrated that silicene obtained 'naturally' by cooling from the melt exhibits various structural previously unreported behaviors. We find the formation of polycrystalline silicene with clear grain boundaries containing various defects including various vacancies, Stone-Wales defects or skew rings and multimembered rings unlike those proposed in the literature. However, atoms in the obtained silicene are mostly involved in six-fold rings, forming a buckling honeycomb structure like that found in practice. We find that buckling is not unique for all atoms in the models although the majority of atoms reveal buckling of the most stable low-buckling silicene found in the literature. The buckling distribution is broad and symmetric. Our comprehensive MD simulation of a relatively large silicene model containing 104 atoms and obtained 'naturally' by cooling from the melt provides original insights into the structure and thermodynamics of this important 2D material.
Return to Publications page