Bombardment of Gas Molecules on Single Graphene Layer at High Temperature
R Murugesan and JH Park and DS Ha, PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 1628, 933-938 (2014).
DOI: 10.1063/1.4902693
Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H-2), we will concentrate on the impact by realistic molecules (e.g., CO2 and H2O). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.
Return to Publications page