Estimation of the free energy of adsorption of a polypeptide on amorphous SiO2 from molecular dynamics simulations and force spectroscopy experiments
RH Meissner and G Wei and LC Ciacchi, SOFT MATTER, 11, 6254-6265 (2015).
DOI: 10.1039/c5sm01444a
Estimating the free energy of adsorption of materials-binding peptides is fundamental to quantify their interactions across bio/inorganic interfaces, but is difficult to achieve both experimentally and theoretically. We employ a combination of molecular dynamics (MD) simulations and dynamical force-spectroscopy experiments based on atomic force microscopy (AFM) to estimate the free energy of adsorption Delta G(ads) of a (GCRL) tetrapeptide on amorphous SiO2 in pure water. The results of both equilibrium, advanced sampling MD and non-equilibrium, steered MD are compared with those of two different approaches used to extract Delta G(ads) from the dependence of experimentally measured adhesion forces on the applied AFM loading rates. In order to obtain unambiguous peak forces and bond loading rates from steered MD trajectories, we have developed a novel numerical protocol based on a piecewise-harmonic fit of the adhesion work profile along each trajectory. The interpretation of the experiments has required a thorough quantitative characterization of the elastic properties of polyethylene glycol linker molecules used to tether (GCRL)(15) polypeptides to AFM cantilevers, and of the polypeptide itself. All obtained Delta G(ads) values fall within a relatively narrow window between -5 and -9 kcal mol(-1), but can be associated with large relative error bars of more than 50%. Among the different approaches compared, Replica Exchange with Solute Tempering simulations augmented with MetaDynamics (RESTMetaD) and fitting of dynamic force spectroscopy experiments with the model of Friddle and De Yoreo lead to the most reliable Delta G(ads) estimates.
Return to Publications page