Friction between ring polymer brushes

A Erbas and J Paturej, SOFT MATTER, 11, 3139-3148 (2015).

DOI: 10.1039/c4sm02818j

Friction between ring polymer brush bilayers sliding past each other at melt densities is studied using extensive coarse-grained molecular dynamics simulations and scaling arguments, and the results are compared to the friction between bilayers of linear polymer brushes. We show that for a velocity range spanning over three decades, the frictional forces measured for ring polymer brushes are half of the corresponding friction in the case of linear brushes. In the linear-force regime, the weak inter-digitation between ring brush layers as compared to linear brushes leads also to a lower number of binary collisions between the monomers from opposing brushes. At high velocities, where the thickness of the inter-digitation between bilayers is on the order of monomer size regardless of brush topology, stretched segments of ring polymers adopt the double-stranded conformation. As a result, monomers of the double- stranded segments collide on average less with the monomers of the opposing ring brush even though a similar number of monomers occupies the inter-digitation layer for ring and linear brush bilayers. The numerical data obtained from our simulations are consistent with the proposed scaling analysis. Conformation-dependent friction reduction observed in ring brushes can have important consequences in non- equilibrium bulk systems.

Return to Publications page