Unraveling the Sinuous Grain Boundaries in Graphene

ZH Zhang and Y Yang and FB Xu and LQ Wang and BI Yakobson, ADVANCED FUNCTIONAL MATERIALS, 25, 367-373 (2015).

DOI: 10.1002/adfm.201403024

Grain boundaries (GBs) in graphene are stable strings of pentagon- heptagon dislocations. The GBs have been believed to favor an alignment of dislocations, but increasing number of experiments reveal diversely sinuous GB structures whose origins have long been elusive. Based on dislocation theory and first-principles calculations, an extensive analysis of the graphene GBs is conducted and it is revealed that the sinuous GB structures, albeit being longer than the straight forms, can be energetically optimal once the global GB line cannot bisect the tilt angle. The unusually favorable sinuous GBs can actually decompose into a series of well-defined bisector segments that effectively relieve the in-plane stress of edge dislocations, and the established atomic structures closely resemble recent experimental images of typical GBs. In contrast to previously used models, the sinuous GBs show improved mechanical properties and are distinguished by a sizable electronic transport gap, which may open potential applications of polycrystalline graphene in functional devices.

Return to Publications page