Binding energy and mechanical stability of two parallel and crossing carbon nanotubes

JH Zhao and Y Jia and N Wei and T Rabczuk, PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 471, 20150229 (2015).

DOI: 10.1098/rspa.2015.0229

The binding energy between two parallel (and two crossing) single-walled (and multi-walled) carbon nanotubes (CNTs) is obtained by continuum modelling of the van der Waals interaction between them. The dependence of the binding energy on their diameters, number of walls and crossing angles is systematically analysed. The critical length for the mechanical stability and adhesion of the CNTs is determined by the function of EiIi, h and gamma, where EiIi, h and gamma are the CNTs bending stiffness, distance and binding energy between them, respectively. Checking against full atom molecular dynamics calculations show that the continuum solution has high accuracy. The established analytical solutions should be of great help for designing nanoelectromechanical devices.

Return to Publications page