Defect- and dopant-controlled carbon nanotubes fabricated by self- assembly of graphene nanoribbons
C Zhang and SH Chen, NANO RESEARCH, 8, 2988-2997 (2015).
DOI: 10.1007/s12274-015-0804-0
Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self- assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-conductive properties but also for carbon nanotubes with electromagnetic induction characteristics.
Return to Publications page