Closed and open-ended stacking fault tetrahedra formation along the interfaces of Cu-Al nanolayered metals
RZ Li and HB Chew, PHILOSOPHICAL MAGAZINE, 95, 2747-2763 (2015).
DOI: 10.1080/14786435.2015.1077283
Stacking fault tetrahedra (SFTs) are volume defects that typically form by the clustering of vacancies in face-centred cubic (FCC) metals. Here, we report a dislocation-based mechanism of SFT formation initiated from the semi-coherent interfaces of Cu-Al nanoscale multilayered metals subjected to out-of-plane tension. Our molecular dynamics simulations show that Shockley partials are first emitted into the Cu interlayers from the dissociated misfit dislocations along the Cu-Al interface and interact to form SFTs above the triangular intrinsic stacking faults along the interface. Under further deformation, Shockley partials are also emitted into the Al interlayers and interact to form SFTs above the triangular FCC planes along the interface. The resulting dislocation structure comprises closed SFTs within the Cu interlayers which are tied across the Cu-Al interfaces to open-ended SFTs within the Al interlayers. This unique plastic deformation mechanism results in considerable strain hardening of the Cu-Al nanolayered metal, which achieves its highest tensile strength at a critical interlayer thickness of ~4nm corresponding to the highest possible density of complete SFTs within the nanolayer structure.
Return to Publications page