INVITED ARTICLE Molecular dynamics simulations of alkyl substituted nanographene crystals

OG Ziogos and DN Theodorou, MOLECULAR PHYSICS, 113, 2776-2790 (2015).

DOI: 10.1080/00268976.2014.996617

Discotic polyaromatic molecules, similar to nanometric graphene flakes, constitute an interesting class of materials for organic electronic applications. Grafting flexible side chains around the periphery of such molecules enhances their processability and gives rise to diverse behaviours, such as the manifestation of liquid-crystalline character and anisotropic mechanical response. In this work, we examine by means of molecular dynamics simulations the properties of molecular crystals comprised of alkyl-substituted hexa-peri-hexabenzocoronene mesogens. Pristine and mono-substituted systems by hydrogen or iodine atoms are modelled, with variable side chain length. A general structural and mechanical robustness to peripheral substitution is reported, with the mesogens forming tightly packed molecular wires even at elevated temperature and pressure. In their discotic ordering, the molecules present relatively low translational mobility, a beneficial phenomenon for charge transport. A thermotropic dependence of the mechanical response is identified, with the systems behaving differently in their room-temperature crystalline phase and in their liquid-crystalline phase at elevated temperatures. The melting process is also examined, elucidating an initial negative expansion along a high symmetry direction and the existence of a metastable state, before falling into the final liquid-crystalline state.

Return to Publications page