Temperature inversion of the thermal polarization of water
J Armstrong and F Bresme, PHYSICAL REVIEW E, 92, 060103 (2015).
DOI: 10.1103/PhysRevE.92.060103
Temperature gradients polarize water, a nonequilibrium effect that may result in significant electrostatic fields for strong thermal gradients. Using nonequilibrium molecular dynamics simulations, we show that the thermal polarization features a significant dependence with temperature that ultimately leads to an inversion phenomenon, whereby the polarization field reverses its sign at a specific temperature. Temperature inversion effects have been reported before in the Soret coefficient of aqueous solutions, where the solution changes from thermophobic to thermophilic at specific temperatures. We show that a similar inversion behavior is observed in pure water. Microscopically, the inversion is the result of a balance of dipolar and quadrupolar contributions and the strong temperature dependence of the quadrupolar contribution, which is determined by the thermal expansion of the liquid.
Return to Publications page