ATOMISTIC-CONTINUUM HYBRID SIMULATION OF HEAT TRANSFER BETWEEN ARGON FLOW AND COPPER PLATES

YJ Mao and YW Zhang and CL Chen, PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 8A, UNSP V08AT10A021 (2015).

A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic- continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate hi this situation is much higher than that at macroscopic when the flow is fully developed.

Return to Publications page