Icephobicity of Functionalized Graphene Surfaces

XX Zhang and M Chen, JOURNAL OF NANOMATERIALS, 2016, 6731840 (2016).

DOI: 10.1155/2016/6731840

Manipulating the ice nucleation ability of liquid water by solid surface is of fundamental importance, especially in the design of icephobic surfaces. In this paper, the icephobicity of graphene surfaces functionalized by sodium ions, chloride ions, or methane molecules is investigated using molecular dynamics simulations. The icephobicity of the surface is evaluated by the freezing temperature. The freezing temperature on surface functionalized by methane molecules decreases at first and then increases as a function of the number groups, while the freezing temperature increasesmonotonically as a function of the number groups upon surfaces functionalized by sodium ions or chloride ions. The difference can be partially explained by the potential morphologies near the surfaces. Additionally, the validity of indicating the ice nucleation ability of water molecules using the number of six rings in the system is examined. Current study shows that the ice nucleation upon functionalized surfaces is inhibited when compared with smooth graphene substrate, which proves the feasibility of changing the icephobicity of the surfaces by functionalizing with certain ions or molecules.

Return to Publications page