Efficient transport of droplet sandwiched between saw-tooth plates
LY Wang and HA Wu and FC Wang, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 462, 280-287 (2016).
DOI: 10.1016/j.jcis.2015.09.071
The transport of droplet sandwiched between smooth and saw-tooth plates was investigated using molecular dynamics method. The repeated opening and closing of the plates result in sequential stretching and squeezing of the droplet, which provide the driving force. The asymmetrical saw tooth obstructs the backward motion of the droplet, and gives rise to a net forward displacement of the droplet in every opening and closing cycle. This unidirectional motion facilitates the efficient droplet transport, which is referred to as the ratchet-like effect in this work. Our simulations also reveal that the influence of the surface wettability on the droplet transport is different for saw-tooth and smooth plates. Droplet transport efficiency exhibits monotonic decrease with the increase of the solid-liquid interactions for saw-tooth plates. While for smooth plates, unidirectional droplet movement was only observed for certain solid-liquid interactions. Taken together these simulation results and theoretical analysis, we demonstrate that hydrophobic saw-tooth plates can improve the transport efficiency significantly. These findings not only enhance our understanding of the droplet transport from atomistic scale, but also are beneficial to practical applications in designing of micro- and nano-fluidic systems. (C) 2015 Elsevier Inc. All rights reserved.
Return to Publications page