Effect of layer charge on the crystalline swelling of Na+, K+ and Ca2+ montmorillonites: DFT and molecular dynamics studies
A Seppala and E Puhakka and M Olin, CLAY MINERALS, 51, 197-211 (2016).
DOI: 10.1180/claymin.2016.051.2.07
The swelling and cation exchange properties of montmorillonite are fundamental in a wide range of applications ranging from nanocomposites to catalytic cracking of hydrocarbons. The swelling results from several factors and, though widely studied, information on the effects of a single factor at a time is lacking. In this study, density functional theory (DFT) calculations were used to obtain atomic-level information on the swelling of montmorillonite. Molecular dynamics (MD) was used to investigate the swelling properties of montmorillonites with different layer charges and interlayer cationic compositions. Molecular dynamics calculations, with CLAYFF force field, consider three layer charges (-1.0, -0.66 and -0.5 e per unit cell) arising from octahedral substitutions and interlayer counterions of Na, K and Ca. The swelling curves obtained showed that smaller layer charge results in greater swelling but the type of the interlayer cation also has an effect. The DFT calculations were also seen to predict larger d values than MD. The formation of 1, 2 and 3 water molecular layers in the interlayer spaces was observed. Finally, the data from MD calculations were used to predict the self-diffusion coefficients of interlayer water and cations in different montmorillonites and in general the coefficient increased with increasing water content and with decreasing layer charge.
Return to Publications page