Effect of Polymer/Solid and Polymer/Vapor Instantaneous Interfaces on the Interfacial Structure and Dynamics of Polymer Melt Systems
S Bekele and M Tsige, LANGMUIR, 32, 7151-7158 (2016).
DOI: 10.1021/acs.langmuir.6b01554
Polymers are used in a wide range of applications that involve chemical and physical processes taking place at surfaces or interfaces which influence the interaction between the polymer material and the substance that comes into contact with it. Polymer surfaces are usually modified either chemically or physically for specific applications such as facilitating wetting, reducing friction, and enhancing adhesion. The variety and complexity of surface and interfacial processes requires a molecular-level understanding of the structural and dynamical properties of the surface/interface layer to help in the design of materials with desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structure and dynamics at the surface of polymer films. We find that the density profiles of the films as a function of distance relative to an instantaneous surface have a structure indicative of a layering at the polymer/vapor interface similar to the typical layered structure observed at the polymer/substrate interface. However, the interfacial molecules at the polymer/vapor interface have a higher mobility compared to that in the bulk while the mobility of the molecules is lower at the polymer/substrate interface. Time correlation of the instantaneous polymer/vapor interface shows that surface fluctuations are strongly temperature dependent and are directly related to the mobility of polymer chains near the interface.
Return to Publications page