Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene
TS Zhu and E Ertekin, NANO LETTERS, 16, 4763-4772 (2016).
DOI: 10.1021/acs.nanolett.6b00557
Recently, the domains of low-dimensional (low-D) materials and disordered materials have been brought together by the demonstration of several new low-D, disordered systems. The thermal transport properties of these systems are not well-understood. Using amorphous graphene and glassy diamond nanothreads as prototype systems, we establish how structural disorder affects vibrational energy transport in low- dimensional, but disordered, materials. Modal localization analysis, molecular dynamics simulations, and a generalized model together demonstrate that the thermal transport properties of these materials exhibit both similarities and differences from disordered 3D materials. In analogy with 3D, the low-D disordered systems exhibit both propagating and diffusive-vibrational modes. In contrast to 3D, however, the diffuson contribution to thermal transport in these low-D systems is shown to be negligible, which may be a result of inherent differences in the nature of random walks in lower dimensions. Despite the lack of diffusons, the suppression of thermal conductivity due to disorder in low-D systems is shown to be mild or comparable to 3D. The mild suppression originates from the presence of low frequency vibrational modes that maintain a well-defined polarization and help preserve the thermal conductivity in the presence of disorder.
Return to Publications page