A Comparison of the Elastic Properties of Graphene- and Fullerene- Reinforced Polymer Composites: The Role of Filler Morphology and Size
CT Lu and A Weerasinghe and D Maroudas and A Ramasubramaniam, SCIENTIFIC REPORTS, 6, 31735 (2016).
DOI: 10.1038/srep31735
Nanoscale carbon-based fillers are known to significantly alter the mechanical and electrical properties of polymers even at relatively low loadings. We report results from extensive molecular-dynamics simulations of mechanical testing of model polymer (high-density polyethylene) nanocomposites reinforced by nanocarbon fillers consisting of graphene flakes and fullerenes. By systematically varying filler concentration, morphology, and size, we identify clear trends in composite stiffness with reinforcement. To within statistical error, spherical fullerenes provide a nearly size-independent level of reinforcement. In contrast, two-dimensional graphene flakes induce a strongly size-dependent response: we find that flakes with radii in the 2-4 nm range provide appreciable enhancement in stiffness, which scales linearly with flake radius. Thus, with flakes approaching typical experimental sizes (similar to 0.1-1 mu m), we expect graphene fillers to provide substantial reinforcement, which also is much greater than what could be achieved with fullerene fillers. We identify the atomic- scale features responsible for this size- and morphology-dependent response, notably, ordering and densification of polymer chains at the filler-matrix interface, thereby providing insights into avenues for further control and enhancement of the mechanical properties of polymer nanocomposites.
Return to Publications page