Surface Rebound of Relativistic Dislocations Directly and Efficiently Initiates Deformation Twinning
QJ Li and J Li and ZW Shan and E Ma, PHYSICAL REVIEW LETTERS, 117, 165501 (2016).
DOI: 10.1103/PhysRevLett.117.165501
Under ultrahigh stresses (e.g., under high strain rates or in small- volume metals) deformation twinning (DT) initiates on a very short time scale, indicating strong spatial-temporal correlations in dislocation dynamics. Using atomistic simulations, here we demonstrate that surface rebound of relativistic dislocations directly and efficiently triggers DT under a wide range of laboratory experimental conditions. Because of its stronger temporal correlation, surface rebound sustained relay of partial dislocations is shown to be dominant over the conventional mechanism of thermally activated nucleation of twinning dislocations.
Return to Publications page