Association of a multifunctional ionic block copolymer in a selective solvent

TN Etampawala and D Aryal and NC Osti and LL He and WT Heller and CL Willis and GS Grest and D Perahia, JOURNAL OF CHEMICAL PHYSICS, 145, 184903 (2016).

DOI: 10.1063/1.4967291

The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shell micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. In dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration. Published by AIP Publishing.

Return to Publications page