Responsive behavior of polyampholyte brushes in electric fields
QQ Cao and LJ Li and CC Zuo and FL Huang and DM Hu, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 24, 085012 (2016).
DOI: 10.1088/0965-0393/24/8/085012
We conducted coarse-grained molecular dynamics simulations to study the responsive behaviors of polyampholyte brushes (PABs) under external electric fields. The effects of charge sequence, chain rigidity and electric field strength on the conformational transition and local structures of grafted chains were addressed systematically. Without electric field, the calculations indicate that the thickness of the PABs is smaller compared to polyelectrolyte brushes (PEBs). The presence of electric field leads to inconsistency of densities between negatively and positively charged monomers except for the alternating brush. Counterions from the PABs can diffuse inside or outside the brush. Unlike the PABs, to separate the polyelectrolytes and their counterions the electric field needs to overcome the osmotic pressure of counterions. The critical field which induces the extension of the flexible PABs is much larger than the PEBs. Meanwhile, it was also found that the critical field which induces the collapse of the PABs decreases as the block length increases. In the limit of strong field studied, the chains with longer blocks are in a local extended state. For diblock brushes, once oppositely charged blocks in a single chain are separated, the chain will become straighter due to strong electrostatic repulsion in intrablock.
Return to Publications page