ESTIMATION OF MICROMECHANICAL NiAl SINTERING MODEL PARAMETERS FROM THE MOLECULAR SIMULATIONS

M Mazdziarz and J Rojek and S Nosewicz, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 15, 343-358 (2017).

DOI: 10.1615/IntJMultCompEng.2017020289

Molecular statics/dynamics estimation of constitutive parameters for a micromechanical NiAl sintering model is reported in this paper. The parameters include temperature-dependent diffusion coefficients, surface energy, and linear thermal expansion. These parameters define material behavior during sintering and are used in the sintering particle model implemented in the discrete element model. The investigated material, the NiAl intermetallic, belongs to novel materials characterized by advantageous mechanical properties. Various machine elements are manufactured from a pure NiAl powder or from powder mixtures containing the NiAl using the sintering technology. It is well known that sintering is governed by diffusion. Therefore diffusive properties are important parameters of the micromechanical model of sintering. Numerical estimation of the model parameters by simulations at the lower scale is a powerful tool alternative to experimental methods. Molecular statics and dynamics models for NiAl have been created using the embedded atom model potential. Numerical simulations have allowed us to estimate the volume, surface, and grain-boundary diffusivity for the B2-type NiAl in the 1573 to 1673 K temperature range. Dependence of the diffusion coefficients on temperature has been determined and validity of the Arrhenius-type temperature dependency has been assessed. The parameters evaluated numerically have been compared with available experimental data as well as with theoretical predictions obtained with other methods. Many of the results presented in this paper have a pioneer character and are not known in the literature.

Return to Publications page