
LAMMPS Developer Meeting 2024LAMMPS Developer Meeting 2024

LAMMPS Refactoring and Testing

Dr. Axel Kohlmeyer

LAMMPS Core Developer

a.kohlmeyer@temple.edu

2LAMMPS Developer Meeting 2024

● LAMMPS started as a Fortran 77 program
● It was later updated to Fortran 90/95
● Rewritten in C++ (98 standard, or rather C with

classes). For portability, advanced C++ features
and STL were restricted to optional code

● Since 2020 LAMMPS requires C++11 and
makes more use of STL and templates.
→ refactoring to modernize code (C → C++)

● Ongoing discussions on how closely to follow
the C++ standard evolution

LAMMPS Programming Language History

3LAMMPS Developer Meeting 2024

● “Continuous release” process:
→ LAMMPS code should always be usable
→ known bugs are fixed as ‘quickly as possible’
→ automated checks for compilation and style
→ unit tests and regression tests

● Main branches in Git repository on GitHub:
→ develop, release, stable, maintenance
→ changes merged as pull requests to develop
→ releases with new features every 2-3 months
→ stable release about once per year
→ bugfixes ported to stable in maintenance

LAMMPS Development Process

4LAMMPS Developer Meeting 2024

Suggested Git/GitHub Workflow (I)
● Create a GitHub account, upload ssh key
● Go to https://github.com/lammps/lammps in your

web browser and create a fork
● On your desktop create a clone of your fork:
git clone git@github.com:<UserID>/lammps.git

● Set up access to the upstream repository
git remote add upstream git@github.com:lammps/lammps.git
git fetch upstream

● Connect “develop” branch to upstream
git checkout develop
git branch -u upstream/develop

https://github.com/lammps/lammps
mailto:git@github.com
mailto:git@github.com

5LAMMPS Developer Meeting 2024

Suggested Git/GitHub Workflow (II)
● Create a feature branch for your work

git checkout -b improve-errors develop

● Work on changes, commit frequently when a
related group of changes is done, push to fork
git push origin -u improve-errors

● When you have a sufficient set of changes,
submit your branch as a pull request

● You may be asked to make additional changes,
LAMMPS developers may add changes, too.
git checkout improve-errors; git pull
[…]
git commit; git push

6LAMMPS Developer Meeting 2024

Suggested Git/GitHub Workflow (III)
● You may work on multiple feature branches

concurrently and switch between them
● It may be needed to update “your” develop

branch or your feature branches to include
changes from upstream:
git checkout develop; git pull
git checkout improve-errors
git merge develop

● Never commit any changes to develop! Undo:
git checkout develop
git reset upstream/develop
git checkout improve-errors

7LAMMPS Developer Meeting 2024

Suggested Git/GitHub Workflow (IV)

● Before submitting a pull request, test that your code
compiles and passes all checks (the ci.lammps.org
server will also run these checks and some more and
block merging on failures):

● cd src; make check

● cd doc; make pdf; make html; make spelling

● cd build; cmake --build . ; ctest

● Running tests with ctest requires compilation with
CMake and -DENABLE_TESTING=on

● https://docs.lammps.org/Howto_cmake.html
https://docs.lammps.org/Howto_github.html

https://docs.lammps.org/Howto_cmake.html
https://docs.lammps.org/Howto_github.html

8LAMMPS Developer Meeting 2024

GitHub Command Line Interface

● Available at https://cli.github.com New command: gh
● Simplifies testing / reviewing process.
● Authenticate with gh auth login
● List pull requests: gh pr list
● Show pull request info: gh pr view 4304
● Show pull request checks: gh pr checks 4304
● Check out pull request branch: gh co 4304
● List issues: gh issue list
● View issue /w comments: gh issue 4303 --comments

https://cli.github.com/

9LAMMPS Developer Meeting 2024

Ongoing LAMMPS Refactoring Projects

● Improve error messages to be more specific
● Replace C style strings with C++ strings
● Use tokenizer classes instead of strtok()
● Specialized classes for (potential) file reading
● Make better use of utility functions in utils::

namespace and platform:: namespace
→ more compact, consistent, and portable code

● Use improved accessor functions for accessing
style instances (fix, compute, group, region, ...)

10LAMMPS Developer Meeting 2024

Project: Improve Error Messages (I)

● Error messages in LAMMPS were terse and generic
(Ex: Illegal XXX command) thus not user friendly.

● The error message would show the source file and line
number. The cause of the error could be figured out
from studying the source code and the documentation.
This is not an option for non-programmer users

● There are additional explanations in the manual for
errors and warnings, but those are often generic, too.

● Error messages should remain brief (1-2 lines of text)
but add the extra bit of information needed to figure
out what the error cause is from the manual alone.

https://docs.lammps.org/Errors_messages.html
https://docs.lammps.org/Errors_warnings.html

11LAMMPS Developer Meeting 2024

Project: Improve Error Messages (II)
● Error messages should be more specific as to which keyword

failed and how; also flag unknown keywords.
● When an error or warning refers to a missing or invalid group,

molecule, variable, compute, fix, or dump ID augment the error
message to include this ID or name.

● Errors with complex explanations or multiple causes should
have an explanatory paragraph in the manual
https://docs.lammps.org/Errors_details.html and just call the
utils::errorurl() function pointing there.

● There is a utils::missing_cmd_args() convenience function for
the common case of missing arguments

● The integration of the {fmt} lib and overloaded error class
functions simplify creating more specific errors

https://docs.lammps.org/Errors_details.html

12LAMMPS Developer Meeting 2024

Project: Favor C++ String Handling

● Replace char * function arguments with
const std::string & in many places

● Use convenience functions like
utils::split_words(), utils::count_words(),
utils::split_lines(), utils::trim(),
utils::trim_comment(), utils::utf8_subst()

● Use utils::strmatch() for more flexible string
comparisons based on simplified regular
expressions (e.g. “^rigid” will match all fix rigid
variant styles, including accelerated versions)

13LAMMPS Developer Meeting 2024

Project: String/File/Argument Parsing
● Tokenizer class to replace strtok()
● ValueTokenizer class to read numbers
● TextFileReader and PotentialFileReader

classes for processing files
● ArgInfo class for processing command

arguments like f_name[dim], c_name[dim1]
[dim2], v_name, d_name, i_name

● Functions like numeric(), inumeric(), tnumeric(),
expand_args(), bounds() have been moved
from class members to the utils:: namespace

14LAMMPS Developer Meeting 2024

Project: Use Convenience Functions
● Platform neutral functions in platform for path

manipulations: platform::path_is_directory(),
platform::path_basename(),
platform::path_dirname(), platform::path_join()

● “Safe” file read functions utils::sfgets(),
utils::sfread() that check for read errors

● Function utils::logmesg() to output the same
text to screen and logfile, supports {fmt}

● Function utils::getsyserror() to get error
strings from failed C library operations

15LAMMPS Developer Meeting 2024

Project: Code Simplification
● Printing adjustable error and warning messages

used to require allocating a buffer, using
sprintf(), output the message, free buffer
→ utils::logmesg(), Error::all(), Error::warning()
now accept variable number of arguments, if
more than one, the first is used as fmtlib format

● Adding/replacing fixes/computes/groups used
to require to build an argv-style argument list
→ convenience overload accepts string (often
created via fmt::format()) and will split words
into argv list via utils::split_words()

16LAMMPS Developer Meeting 2024

Before and After

17LAMMPS Developer Meeting 2024

Porting External LAMMPS Code
● LAMMPS was designed to be easily modified
● Not all externally developed features were submitted for

inclusion into then LAMMPS distribution.
● External code may be “abandoned”, i.e. no longer

updated to be compilable with current LAMMPS.
● Information about known incompatibilities and how to

address them are in the LAMMPS manual at:
https://docs.lammps.org/Developer_updating.html

● Add LAMMPS plugin loader and the styles can be
added to LAMMPS at runtime and code may be
included in https://github.com/lammps/lammps-plugins.
Also for legacy styles removed from LAMMPS?

https://docs.lammps.org/Developer_updating.html
https://github.com/lammps/lammps-plugins

18LAMMPS Developer Meeting 2024

The lammps-plugin repository

● Includes external packages or styles ported to
current LAMMPS and converted to plugin

● Are offered for Windows as additional packages
● Less constraints to be added than for LAMMPS

● No requirement to include documentation
● May have known bugs waiting to be resolved
● May not be contributed by the original author

● A place for staging and testing before the code
is added to the LAMMPS distribution

19LAMMPS Developer Meeting 2024

Integrated Testing in LAMMPS
● Tests exist at multiple levels:

● Tests of individual functions and standalone classes
● Tests of individual LAMMPS commands
● Tests for the C++, C, and Fortran Library interfaces
● Tests for the LAMMPS Python module (in Python)
● Tests for complex LAMMPS operations on force styles (pair,

bond, etc.) using generic executables and input files with
customization and reference data in YAML format

● Tests use googletest or Python unittest

● Enable code coverage to detect untested code paths

● Integration testing is handled by external scripts running on
https://ci.lammps.org or GitHub actions running on Azure

https://ci.lammps.org/

20

Why so Much Testing?
● Early testing limits complexity of bugs:

→ bugs are eliminated early in the development
→ saves time and money

● Testing confirms that added functionality is in
compliance with the specified requirements

● Unit testing encourages modular programming
→ easier to add new functionality

● Tests demonstrate correct and incorrect usage
● Testing is easy and can be automated;

 debugging is complex and requires humans

21LAMMPS Developer Meeting 2024

Automated Testing
● Uses Jenkins server (hosted at Temple)

or GitHub Actions (hosted by Azure)
● Pushes to GitHub or merges trigger test runs

● Integration Testing: compilation using both build
systems and different compilation settings

● Unit tests via CMake and CTest
● Run and regression tests
● Coding style checks
● Static code analysis tests
● All tests must pass to merge pull request

22LAMMPS Developer Meeting 2024

Regression Test Tool from Trung
● Python script to run LAMMPS with inputs in the

“examples” tree and compares results to logs
● YAML style config file to control how to run
● Can run on entire tree or subsets
● Single step or two steps with multiple workers;

two step creates list of inputs for workers
● Quick mode searches inputs with commands

changed in the current branch
● Output summaries in YAML files

23LAMMPS Developer Meeting 2024

Example: Single Step for Folders

export LAMMPS_REG=$LAMMPS_DIR/tools/regression-tests
python3 $LAMMPS_REG/run_tests.py --lmp-bin=$LAMMPS_DIR/build/lmp \
 --config-file=$LAMMPS_REG/config_serial.yaml \
 --example-folders="$LAMMPS_DIR/examples/flow;$LAMMPS_DIR/examples/melt"

Creates the output:

Entering /home/akohlmey/compile/lammps/examples/flow
2 input script(s) to be tested: ['in.flow.couette', 'in.flow.pois']
 + in.flow.couette (1/2)
 all 6 checks passed.
 + in.flow.pois (2/2)
 all 6 checks passed.
--
Entering /home/akohlmey/compile/lammps/examples/melt
1 input script(s) to be tested: ['in.melt']
 + in.melt (1/1)
 all 6 checks passed.

Summary:
 Total number of input scripts: 3
 - Skipped : 0
 - Failed : 0
 - Completed: 3
 - numerical tests passed: 3

24LAMMPS Developer Meeting 2024

Example: Quick Regression (1)

export LAMMPS_REG=$LAMMPS_DIR/tools/regression-tests
python3 $LAMMPS_REG/run_tests.py --lmp-bin=$LAMMPS_DIR/build/lmp \
 --config-file=$LAMMPS_REG/config_quick.yaml \
 --examples-top-level=$LAMMPS_DIR/examples \
 --quick --quick-reference=$LAMMPS_REG/reference.yaml \
 --quick-branch=origin/develop --quick-max=100 --num-workers=2

Creates an output like this:

There are 184 input scripts with changed styles relative to branch github/develop.
Changed styles: {'command': ['ndx2group', 'angle_write', 'dihedral_write', 'info'],
'atom': [], 'compute': ['reduce'], 'fix': ['charge/regulation', 'gcmc', 'widom',
'efield'], 'pair': ['lj/sf/dipole/sf', 'granular', 'aip/water/2dm', 'ilp/graphene/hbn',
'lepton/coul', 'lepton/sphere', 'bop', 'meam/spline', 'meam/sw/spline', 'rebomos',
'tersoff/mod/c', 'pace', 'quip'], 'body': [], 'bond': [], 'angle': ['harmonic'],
'dihedral': ['multi/harmonic', 'opls'], 'improper': [], 'kspace': [], 'dump': [],
'region': [], 'integrate': [], 'minimize': []}
Trimming inputs using reference data from 745 previous runs: trimmed list has 104
entries
Testing 100 randomly selected inputs

And two lists with input files:

input-list-0.txt input-list-1.txt

25LAMMPS Developer Meeting 2024

Example: Quick Regression (2)
Now run the tests concurrently on two runners (or the same node) with:

export LAMMPS_REG=$LAMMPS_DIR/tools/regression-tests
python3 $LAMMPS_REG/run_tests.py --lmp-bin=$LAMMPS_DIR/build/lmp \
 --config-file=$LAMMPS_REG/config_quick.yaml \
 --list-input=input-list-0.txt --output-file=output-0.xml \
 --progress-file=progress-0.yaml --log-file=run-0.log

And:

export LAMMPS_REG=$LAMMPS_DIR/tools/regression-tests
python3 $LAMMPS_REG/run_tests.py --lmp-bin=$LAMMPS_DIR/build/lmp \
 --config-file=$LAMMPS_REG/config_quick.yaml \
 --list-input=input-list-1.txt --output-file=output-1.xml \
 --progress-file=progress-1.yaml --log-file=run-1.log

These will each loops over the 50 input files selected in the previous step:

Input scripts to test as listed in the file:
 input-list-0.txt

There are 50 input scripts listed in input-list-0.txt.

Regression test configuration file:
 /home/akohlmey/compile/lammps/tools/regression-tests/config_quick.yaml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

